Fast Approximate Visibility on the GPU using pre- computed 4D Visibility Fields
نویسندگان
چکیده
We present a novel GPU-based method for accelerating the visibility function computation of the lighting equation in dynamic scenes composed of rigid objects. The method pre-computes, for each object in the scene, the visibility and normal information, as seen from the environment, onto the bounding sphere surrounding the object and encodes it into maps. The visibility function is encoded by a four-dimensional visibility field that describes the distance of the object in each direction for all positional samples on a sphere around the object. In addition, the normal vectors of each object are computed and stored in corresponding fields for the same positional samples for use in the computation of reflection in ray-tracing. Thus we are able to speed up the calculation of most algorithms that trace rays to real-time frame rates. The pre-computation time of our method is relatively small. The space requirements amount to 1 byte per ray direction for the computation of ambient occlusion and soft shadows and 4 bytes per ray direction for the computation of reflection in ray-tracing. We present the acceleration results of our method and show its application to two different intersection intensive domains, ambient occlusion computation and stochastic ray tracing on the GPU.
منابع مشابه
Visibility Silhouettes for Semi-Analytic Spherical Integration
At each shade point, the spherical visibility function encodes occlusion from surrounding geometry, in all directions. Computing this function is difficult and point-sampling approaches, such as ray-tracing or hardware shadow mapping, are traditionally used to efficiently approximate it. We propose a semi-analytic solution to the problem where the spherical silhouette of the visibility is compu...
متن کاملFast GPU-based Visibility Computation for Natural Illumination of Volume Data Sets
Pre-computed radiance transfer (PRT) has been used to render volumetric data under distant low-frequency illumination at real-time rates, including natural illumination, soft shadows, attenuation from semi-transparent occluders and multiple scattering. PRT requires a lengthy pre-process, which is acceptable only for static volume data. However, in practical volume rendering, general transfer fu...
متن کاملParallel and adaptive visibility sampling for rendering dynamic scenes with spatially varying reflectance
Fast rendering of dynamic scenes with natural illumination, all-frequency shadows and spatially-varying reflections is important but challenging. One main difficulty brought by moving objects is that the runtime visibility update of dynamic occlusion is usually time-consuming and slow. In this paper, we present a new visibility sampling technique and show that efficient all-frequency rendering ...
متن کاملFast Global Illumination on Dynamic Height Fields: Supplemental Material
In the case of direct-illumination, we represent visibility at each azimuthal direction in the NLP basis, whereas the approach in [SN08] simply stores the maximum blocking angle. In order to construct the SH visibility per azimuthal wedge, we use the NLP-to-SH blending matrices, whereas the approach in [SN08] queries pre-computed 2D tables of linearly blended SH projections of individual SH wed...
متن کاملFast Approximate Quantitative Visibility for Complex Scenes
Ray tracing and Monte-Carlo based global illumination, as well as radiosity and other finite-element based global illumination methods, all require repeated evaluation of quantitative visibility queries, such as (i) what is the average visibility between a point (a differential area element) and a finite area or volume; or (ii) what is the average visibility between two finite areas or volumes....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010